Челябинские ученые создали алгоритм, распознающий опухоли мозга с вероятностью 99 процентов
17 ноября 2023
Старший научный сотрудник лаборатории больших данных и машинного обучения Южно-Уральского государственного университета профессор Сэчин Кумар разработал модель нейросети для распознавания опухолей мозга по изображениям магнитно-резонансной томографии (МРТ).
«Обучение нейросети проходило на общедоступном наборе из 3064 изображений МРТ от 230 пациентов, – рассказывает Сэчин Кумар. – Распознавались три вида опухолей – глиомы, менингиомы и опухоли гипофиза. Наша модель сочетает в себе элементы сверточной и конволюционной нейронных сетей (U-net и CNN) для сегментации и классификации опухолей, что увеличило ее эффективность с точностью более чем 99 процентов». На наборе данных пациентов с уже подтвержденным диагнозом, в 99,39 процентов была диагностирована болезнь, и лишь 0,61 процентов системой был ошибочно поставлен диагноз «здоровы».
Для такого результата нейросеть прошла 150 циклов обучения. Алгоритмы были реализованы на языке программирования Python. «При обучении нейросети каждое изображение изначально сегментировалось на девять частей, – объясняет суть технологии Сэчин Кумар. – Выстраивалось дерево опорных точек (VPT), просчитывались показатели ближайших соседей-пикселей, создавались метки, которые потом использовались для вычисления вероятностей».Затем использовалась «сверточная» сеть. «Сверточная нейронная сеть (U-net) – особая архитектура для задач семантической сегментации, таких, как например, сегментация опухолей мозга. Она состоит из двух главных частей – кодера и декодера. Кодер собирает и редуцирует пространственную информацию в изображении с помощью сверточных слоев и операций объединения, в то время как декодер преобразует ее для создания карты сегментации.
«Конволюционные нейронные сети (CNN), рекуррентные нейронные сети (RNN), сверточные нейронные сети (U-Net), сети с долговременной и кратковременной памятью (LSTM) – это все технологии глубокого обучения, – поясняет Сэчин Кумар. – В сущности, глубокое обучение полезно тогда, когда объем данных достаточно большой, и простые алгоритмы машинного обучения не справляются с ним за приемлемое время. Глубокое обучение обеспечивает высокую точность при работе именно с большими данными».
Профессор Кумар уверен в эффективности своей модели, однако предостерегает от поспешного ее внедрения. И дело прежде всего в географии. «Общедоступные наборы данных собраны в конкретном регионе планеты, – поясняет Сэчин Кумар. – Но образ жизни и уровень жизни населения, экология, питание, качество воды и воздуха и другие экологические и медицинские параметры в каждой стране разные». Поэтому нейросеть, перед внедрением в больничную практику, предстоит дополнительно обучить на данных МРТ конкретной страны или региона. Но это лишь пока.
«Целью проекта была разработка более точной модели – по сравнению с уже существующими. И нам это удалось, – говорит Сэчин Кумар. – Следующий шаг – сбор, объединение данных из других стран и наконец разработка некой универсальной модели, которую одобрят и внедрят для использования в больницах по всему миру».
Сэчин Кумар – один из семи сотрудников Южно-Уральского государственного университета, получивший премию «Признание ЮУрГУ-2022», победитель в номинации «Наука». Его работа поддержана грантом Российского научного фонда. Со своим открытием он также принимал участие в проекте FENU-2020-0022 «Математические основы, модели и алгоритмы цифровой индустрии» под руководством профессора Леонида Соколинского, поддержанном Министерством образования России.
«Обучение нейросети проходило на общедоступном наборе из 3064 изображений МРТ от 230 пациентов, – рассказывает Сэчин Кумар. – Распознавались три вида опухолей – глиомы, менингиомы и опухоли гипофиза. Наша модель сочетает в себе элементы сверточной и конволюционной нейронных сетей (U-net и CNN) для сегментации и классификации опухолей, что увеличило ее эффективность с точностью более чем 99 процентов». На наборе данных пациентов с уже подтвержденным диагнозом, в 99,39 процентов была диагностирована болезнь, и лишь 0,61 процентов системой был ошибочно поставлен диагноз «здоровы».
Для такого результата нейросеть прошла 150 циклов обучения. Алгоритмы были реализованы на языке программирования Python. «При обучении нейросети каждое изображение изначально сегментировалось на девять частей, – объясняет суть технологии Сэчин Кумар. – Выстраивалось дерево опорных точек (VPT), просчитывались показатели ближайших соседей-пикселей, создавались метки, которые потом использовались для вычисления вероятностей».Затем использовалась «сверточная» сеть. «Сверточная нейронная сеть (U-net) – особая архитектура для задач семантической сегментации, таких, как например, сегментация опухолей мозга. Она состоит из двух главных частей – кодера и декодера. Кодер собирает и редуцирует пространственную информацию в изображении с помощью сверточных слоев и операций объединения, в то время как декодер преобразует ее для создания карты сегментации.
«Конволюционные нейронные сети (CNN), рекуррентные нейронные сети (RNN), сверточные нейронные сети (U-Net), сети с долговременной и кратковременной памятью (LSTM) – это все технологии глубокого обучения, – поясняет Сэчин Кумар. – В сущности, глубокое обучение полезно тогда, когда объем данных достаточно большой, и простые алгоритмы машинного обучения не справляются с ним за приемлемое время. Глубокое обучение обеспечивает высокую точность при работе именно с большими данными».
Профессор Кумар уверен в эффективности своей модели, однако предостерегает от поспешного ее внедрения. И дело прежде всего в географии. «Общедоступные наборы данных собраны в конкретном регионе планеты, – поясняет Сэчин Кумар. – Но образ жизни и уровень жизни населения, экология, питание, качество воды и воздуха и другие экологические и медицинские параметры в каждой стране разные». Поэтому нейросеть, перед внедрением в больничную практику, предстоит дополнительно обучить на данных МРТ конкретной страны или региона. Но это лишь пока.
«Целью проекта была разработка более точной модели – по сравнению с уже существующими. И нам это удалось, – говорит Сэчин Кумар. – Следующий шаг – сбор, объединение данных из других стран и наконец разработка некой универсальной модели, которую одобрят и внедрят для использования в больницах по всему миру».
Сэчин Кумар – один из семи сотрудников Южно-Уральского государственного университета, получивший премию «Признание ЮУрГУ-2022», победитель в номинации «Наука». Его работа поддержана грантом Российского научного фонда. Со своим открытием он также принимал участие в проекте FENU-2020-0022 «Математические основы, модели и алгоритмы цифровой индустрии» под руководством профессора Леонида Соколинского, поддержанном Министерством образования России.
Источник: https://naked-science.ru/article/column/chelyabinj-opuholi-mozga